

Rapid Single Cell Manufacturing of Thin-Film CIGS

2nd Thin Film Summit US San Francisco, CA December 1, 2009

Robert G. Wendt

The XsunX Approach

- CIGS Deposition Technology , and
 - ✓ Best Thin Film Performance
- Rapid Single Substrate Processing using Hard Drive (HD) Equipment
 - ✓ Established a Joint Development Agreement with the Industrial Leader for HD Equipment → Intevac
 - Co-Located Technical Team, Deposition Systems, and Metrology Equipment
 - Production Volume Achieved Via Speed Rather Than Large Area Processing
- ✤ Final Goal → High Volume Production of CIGS Cells that have a Similar Efficiency as Poly x-Si Produced at a Lower Cost
 - Module Uses Same Glass, Encapsulant (EVA, PVB), Dual Rated j-Box, and Frame as Current x-Si Modules → The Difference is a Lower Cost Cell

Result : Equal Performance at a Lower Cost → Best \$/W

XsunX Combines Mature HDD Systems with CIGS Expertise

*** Better Manufacturing Technology**

- True Single Substrate Processing
- State-of-the-Art Control System

Process Flexibility

- Easily Add Process Stations
- Factory Efficient Small Footprint

Low Cost of Ownership

- High Throughput
- High Utilization

XsunX Proprietary

www.xsunx.com

3

HD Single Cell Processing Video

- High Throughput, Individual Cell Processing
- Tight Process Control for Uniform Morphology
- High Capital Equipment Utilization

Comparison of Solar Technologies

Family of Solar Cells for Terrestrial Applications

CIGS Provides the Best Opportunity to Improve Module Efficiency (Lab vs. Production Headroom) and the Best Overall Thin Film Efficiency

* Acquired from Published Data/Sell Sheets

** Green MA, Emery K, Hishikawa Y, and Warta W. Solar Cell Efficiency Tables (Version 33). Progress in Photovoltaics: Research and Applications 2008; 17: 85-94.

Why CIGS? Demonstrated Attributes

- ✤ High Efficiency → Highest of the Thin Films and Equivalent to Poly Crystalline Si (Laboratory Scale)
- ✤ Tolerant Chemistry → Good Performance Achieved with a Wide Range of Cu/(In+Ga) and Ga/(In +Ga) Composition Ratios
- ◆ Thin-Film Nature → CIGS absorber is ~2.5 um compared to ~170 to 250 um for Si
 - CIGS Less Susceptible to Commodity Pricing of Raw Materials or to Material Shortages
- Manufacturing Technology Advancements

 CIGS Benefits from the Manufacturing Technology and Equipment Developed in other Thin Film Arenas
 - Hard Disk Drive, Flat Panel Display, Architectural Plate Glass

Hard Disk vs. CIGS Structure

HD Structure is a Similar Multi-Layer Stack as CIGS

• The CIGS Structure is About 20X Thicker than an HD Structure

- ✓ HD Equipment Provides Precise Control of Very Thin Layers
- Question: CAN HD Equipment Provide High Volume Production Throughput of the Much Thicker CIGS Layers

Preliminary Results → Yes

Current Results – Molybdenum Back Contact

- Demonstrated Back Contact
 Sputtering at High Throughput
 Rates Similar to HD
- Deposited In Sequential Fashion in 4 Separate Stations
 - 4 sec Dwell Time Per Station
 - Results in ~17,000 Cells/Day
 ~35kW/Day
 - Rate 35 nm/s-kW
 - Uniformity ~+/- 3%
 - Demonstrated >10% Efficiency CIGS Cells on High Rate Sputtered Mo

Current Results – TCO Front Contact

Demonstrated TCO Sputtering at High Throughput Rates Similar to HD

- Transmission (500-1000nm) > 90%
- Resistance < 10 15 ohms/square
- Rate up to 50 Ang/kW-sec
- Dwell Time of 2.5 sec/station (4 Stations)
- Crystalline Structure At Room Temperature

- Technology Development Progressing According to Schedule
- Initial Results Demonstrated that the HDD Equipment Can be Adapted for High Throughput Production of the CIGS Layers
 - Tools Are Capable of Meeting The ~13 MW/year Objective
 - ✓ Substrate Every 4-5 Seconds
- Molybdenum and Transparent Conductive Oxide Nearly Complete and Require Minor Optimization
- Metal Source Preliminary Evaporation Results Are Encouraging

XsunX Approach \rightarrow Low Risk, Speed to Market, Economically Viable

- Small Area Wafers -> Similar to Techniques Successfully Employed in Laboratories
 - Smaller areas, about 5" squares, provide controlled deposition zones and improve solar cell performance by statistically reducing process variation and defects.
- ◆ Technological Experience → XsunX Staff has Previously Developed CIGS Evaporation Technology and Front and Back Contact Sputtering Used in Commercial Production
- ✤ Not New Science → Better Engineering, Processing Methods, and Use of Well Known Science
- ✤ HD Operation Know-How → High Factory Throughput and Yield, Low Down Time and Mean Time Between Failure, Low Capital Costs

Result: Revolutionizing the Thin Film Solar Cell Manufacturing Industry

Thank You!!

Confidential

www.xsunx.com

