

How to Achieve the Sunshot Goal of \$0.50/watt at the Module Level Using Compound Semiconductors?

Industrial Perspective

Materials Research Society Symposium D, Spring 2011 San Francisco, CA

Robert G. Wendt Chief Technical Officer XsunX Solar, Inc.

Program Topics and Presentation Outline/Approach

- Program Topic: How to Achieve the Sunshot Goal of \$0.50/watt at the Module Level Using Compound Semiconductors?
 - What are the Major Costs in PV?
 - Is this an Achievable and Realistic Goal?
 - Identify Areas/Components of High Cost and Ideas to Lower those Costs. What Needs to Happen?
 - What can Material Scientists do to Reach the Goal?

Presentation Outline/Approach

- Assess Cost of the Module Finishing Materials
 - ✓ Required For All Technologies and Module Manufacturers
 - ✓ Impact as a Function of Conversion Efficiency
- Determines Budget for Remainder of a Module Product
 - ✓ Cells Materials, Interconnect Materials, Direct Overhead, Direct Labor
- Challenges and Possible Requirements to Meet Sunshot Goals

Definitions To Aid Discussion

Efficiency

- Active Area → Area of the Active PV Only
 - ✓ Subtract Grid Area from Area
 - ✓ Don't Count Cell-to-Cell Spacing, Cell-to-Edge Spacing, Frame Area
- Aperture Area or Cell Area → Includes Grid Shadowing Losses
 - ✓ Don't Count Cell-to-Cell, Cell-to-Edge, Frame Areas
- Total Area → Efficiency Measured Using The Frame-to-Frame Area
 - ✓ Includes Grid Shadowing Losses
 - Includes Area Losses Associated with Cell-to-Cell Spacing, Cell-to-Edge Spacing and Frame

• Example of Active Area-to-Module Losses

Cell Configuration>	Single Cell	MI Module			
Losses	125 mm Pseudo Sq	125 mm Sq	0.5 cm wide cell		
Cell Area and Resistance	8.99%	8.99%	12.84%		
Cell Spacing	7.56%	2.81%	0.00%		
Current Mismatch	0.00%	0.00%	10.00%		
Periphery	6.40%	6.40%	6.40%		
Last Cell (Covered with Buss)	0.00%	0.00%	4.88%		
Total Loss	22.95%	18.20%	34.12%		

Definitions To Aid Discussion

- Cost Definitions for \$/W Discussion
 - Product
 - ✓ Cells
 - ✓ Strings
 - ✓ Module with All Components to Be Sold
 - o Laminated with Frame, J-Box, Label, and Instructions

Accounting

- Direct Material and Labor
- ✓ Direct Material, Labor, and Overhead (OH)
 - o Includes Depreciation, Utilities, Factory Floor Space, Inbound Shipping
- ✓ Total Factory Cost
 - Bullet Above + Indirect OH, Sales/Marketing, G&A, Tax

Module Material Cost as a Function of Efficiency ("Back End Cost")

Module Packing Materials

 Quotes from Recognized UL/IEC Qualified Suppliers for 1.0 x 1.6-m Module, >20MW/yr Volume

Module	Typical 1.0 x	Cost Impact, \$/W for Completed Module											
Efficiency	1.6-m Module,	Temper Glass		Dual Rated j-Box		EVA, 2 Sheets		Back Sheet		(\$11.50/Frame			
	Watts	(\$8.00/m2)		(\$9.00)		(\$9.68/m2)		(\$11.00/m2)		Set)		Total	
8%	128	\$	0.100	\$	0.070	\$	0.121	\$	0.138	\$	0.09	\$	0.519
10%	160	\$	0.080	\$	0.056	\$	0.097	\$	0.110	\$	0.07	\$	0.415
12%	192	\$	0.067	\$	0.047	\$	0.081	\$	0.092	\$	0.06	\$	0.346
14%	224	\$	0.057	\$	0.040	\$	0.069	\$	0.079	\$	0.05	\$	0.296
16%	256	\$	0.050	\$	0.035	\$	0.061	\$	0.069	\$	0.04	\$	0.259

- Cost Impact, \$/W for Completed Module Temper Glass (\$8.00/m2)
- Cost Impact, \$/W for Completed Module Dual Rated j-Box (\$9.00)
- Cost Impact, \$/W for Completed Module EVA, 2 Sheets (\$9.68/m2)
- Cost Impact, \$/W for Completed Module Back Sheet (\$11.00/m2)
- Cost Impact, \$/W for Completed Module Frame (\$11.50/Frame Set)
 - Cost Impact, \$/W for Completed Module Total

Spring MRS, 2011

Module Material Cost Drivers

- ✤ Material
 - Glass → Energy....Glass Plants are Virtually Fully Automated
 - J-Box \rightarrow Petroleum Products for Box Resin, Copper
 - EVA → Polymers (Vinyl Acetate and Ethylene)
 - Back Sheet → Polymers (Polyvinyl Fluoride, PET, EVA Bond Layer)
 - Frame → Aluminum, Energy
- ✤ At 16% Module Eff. Cost of the Module Packaging is ~\$0.25/Watt
- Leaves ~\$0.25/Watt for:
 - Factory, Direct Labor, Cell Direct Material, Interconnect Direct Material, Direct OH (Depreciation, Utilities, Consumables)

Achieving High Efficiency to Support the SunShot Goal

CIGS Provides the Highest Thin Film Efficiency and the Most Head Room For Improvement

XsunX Approach → Rapid Single Cell Processing to Capture the CIGS Headroom Potential By Reducing Processing Variation

* Acquired from Published Data/Sell Sheets

** Green MA, Emery K, Hishikawa Y, and Warta W. Solar Cell Efficiency Tables (Version 33). *Progress in Photovoltaics: Research and Applications* 2008; 17: 85-94.

Challenges to Achieve the Sunshot Objective: \$0.50/Watt Module

- Efficiency Improvement is a Must
 - At Less Than 10% Module Area Eff Entire Budget Required for Module Materials
 - Requires High Cell Ef, Low Loss Interconnect, Low Loss Grids (Minimize Area)

 a-Si, CdTe, CIGS, x-Si
- Factory Cost Requirements Must Be Minimized
 - Must Be Low Cost (No H-Occupancy, B or F Occupancy) and Minimize Foot Print

 a-Si, CdTe, CIGS, x-Si
- Long-Term Module Stability Is Required
 - > 20 Year Warranty....Is 50 Year Possible? Decelerate the Gradual Degradation
 - Field Performance Guarantee are Becoming the Norm

 a-Si, CdTe, CIGS, x-Si
- Final Product Must No Have Toxic Materials Requiring Special Disposal
 - Avoid Expensive Product Disposal Requirement (And Reserves on Revenue)

 a-Si, CdTe, CIGS, x-Si
- Cell Materials Must be Low Cost and have Cost Stability
 - Thin Films Are Much Less Susceptible to Cell Material Commodity Pricing Fluctuations

 a-Si, CdTe, CIGS, x-Si
- Legend
 - Red: Possible Major Impediment to Meeting theSunshot Goal
 - Blue: May Be a Challenge to Meeting the Sunshot Goal
 - Green: Compatible with Meeting the Sunshot Goal

Spring MRS, 2011

All Roads Lead to CIGS

- ✤ High Efficiency → Highest of the Thin Films and Equivalent to Poly Crystalline Si (Laboratory Scale)
- ✤ Tolerant Chemistry → Good Performance Achieved with a Wide Range of Cu/(In+Ga) and Ga/(In +Ga) Composition Ratios
- ✤ Thin-Film Nature → CIGS absorber is ~2.5 um compared to ~170 to 250 um for Si
 - CIGS Less Susceptible to Commodity Pricing of Raw Materials or to Material Shortages
- Stability → CIGS Does NOT Exhibit Light-Induced Instability Found with Some Thin-Film Solar Devices
- ✤ Non-Toxic → CIGS Does Not have Reportable Quantities of Hazardous Substances → Ref: Vasilis Fthenakis, Brookhaven National Lab

Thank You!!

How to Achieve the Sunshot Goal of \$0.050/watt at the Module Level Using Compound Semiconductors?

Industrial Perspective

Materials Research Society Symposium D, Spring 2011 San Francisco, CA

Robert G. Wendt Chief Technical Officer XsunX Solar, Inc.

